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Ahstracl. Mossbauer filtration of synchrotron radiation (sn) in the multipulse regime is 
considered. Phase correlations causes interference between resonmt responses of single pulses 
of SR sequence. Therefore, both the coherent amplification of response intensity and the variation 
in form of free-mduction decay take place. Numerical analysis of theoretical expressions has 
been carried out. 

1. Introduction 

Recently experiments with synchrotron radiation (SR) have aroused a great amount of interest 
in Mossbauer spectroscopy. Usually experimenters investigate the time structure of the 
resonant response of the Mossbauer nuclei system to the SR pulse and modulation of time 
dependences of scattered radiation due to hyperfine splitting of nuclear levels. Experiments 
were made both on diffraction scattering [ I ]  and forward scattering [2] .  The frequency 
of SR 'flashes' was larger than the reverse lifetime r of the nuclear in order to study the 
time Structure of the resonant response to a single SR pulse. However, in SR sources the 
regime can be realized when the time interval between pulses is shorter than l/r. In 
this case the incident radiation must be considered as the sequence of incoherent pulses 
with additional phase relations (this situation looks like that for an optical inteferometer 
with an incoherent source). Since the incoming wave is coherent to wave outgoing from 
the resonant sample, then interference effects for the intensity of scattered radiation are 
possible. They are essential only within the resonant response sequence when the coherent 
time of the single responses are of the order of the time intervals between them. It can 
cause both amplification of response signal and variation in its time structure. The problem 
is considered in this paper. 

2. Formalism 

The semiclassical 'Maxwell-Bloch equations formalism in the slowly changing approxima- 
tion is used for the theoretical calculations [3]. 

The original system of equations for the y-radiation field A(r, t) and the density matrix 
p of the nuclear system has the form 
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In (I) ,  j is the nuclear transition cutrent operator, wes is the hyperfine component of y-  
transition frequency (the quadrupole component is neglected), Qop is the lattice vibration 
frequency (0, = O), pio) = 1/(2IX + 1) is the equilibrium population of the ground 
nuclear state and T: is the radius vector of a nucleus when there are no lattice vibrations. 
The system (1) is correct for all y-optics domain excepting the y-laser regime. According 
to [3], A(T, f), p , $ ( ~ ,  t )  can be written as 

where H are the reciprocal-lattice vectors. The following conditions are me. 
Firstly, 

I A U x [ ~ l I ( k + H ) - V ) a x I < < I ( I C + H ) I Z - l U x [  

(here, we are not considering the grazing-incidence case, when ]AuH[ - [(IC+ H )  . V)UH[ 
[4,5]). Secondly, 

ia2aHiat2i  << (w/c)iaaH/ati << ( w Z i ~ 2 ) ~ ~ H ~  

Then, using ( la)  and the above two conditions the shortened system of Maxwell-Bloch 
equations can be obtained: 

IICI = k kZ = (w/c)'. 

( n x  . V ) U H  + (i/c)aaH/ar + i(kaH/2)aH = 2(7ci/h)(j) 
(2) 

auop/at a8 = -i(A - oC8 - GOO +ir/Z)u;; - (i/h)pf)j$ . U H  

where n x  = (IC + H)/l(IC + H)I, C ~ H  = H . ( H  + 2k)/k2. In order to solve the system 
(2), we mzke the substitution: 

m 
aH(r, t )  = du u H ( T .  u )  exp(-iut) 

J-m 
m 

U;;(T, f) = l, du U:;(., U) exp(-iur). 

From (2) and (2a) we can obtain the system of equations for Fourier images U"(?-, U) for 
the case of coherent Mossbauer scattering (r << 5208 when ,6 # 0): 
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where f is the Debye-Waller factor and q is the abundance of the resonant nuclei. The 
matrix elements Jch. = f - ‘ / ’ j z  are the same for all resonant nuclei of the sample. 
SHH,  = runit _I, exp[i(H ~- H I )  . rj] is the nuclear structural factor. VO is the unit-cell 
volume and A = o - oo is the Doppler shift of the incident radiation frequency. 

Using [6], equation (3) can be considerably simplified when hyperfine splitting of nuclear 
levels is absent (or$ = 0): 

( T Z H .  V ) ~ & ( T ,  U) + (iu/c)aL(r, U) + i(kuH/2)ag(r, U) = i(k/2)FAH,a&, (r. U) ( 3 d  

where a& = (e”;, ax) ,  eh is the unit transverse polarization vector. The nuclear scattering 
amplitude Fix, has the form 

F ~ H ,  (I/4Vok) f rUabss,yH, PAX, /A + U + i r / 2  

where Uab$ is the nuclear resonant absorption cross-section and P2H, = (ez  . ex , )  is the 
nuclear polarization factor. The system (3a) may be easily generalized when one adds a 
Rayleigh electron scattering amplitude to FLH,., Its form can be found in [7]. To solve ( 3 4  
we use the substitution 

aZ(r ,  U) = a~(v)exp[ikp’(u)z] 

which is valid when the incident radiation is a plane wave. The solution of the  corresponding^ 
algebraic system for ah(u) and ps(u) is already known. The values aZ(u)  are expressed 
via the amplitude of the incident radiation field a:,Jw) and the boundary conditions for each 
specific case of scattering. Let us consider the following two cases of coherent scattering 
which can be realized in Mossbauer experiments with SR. 

(1) First consider forward scattering without any diffraction process (H = 0). Then for 
radiation passing through the sample of thickness L the expression 

“;;(U, L )  = &(U) exp(ikF&L/Z) (3b) 

is correct. 
(2) Next the two-wave approximation of diffraction scattering under Bragg geometry 

conditions in a thick crystal is considered. Then for the diffracted component of scattered 
radiation the expression 

u;,(w) = u ! ~ ~ ( w ) ( F &  + F&, + U H  - [(F;o + FAH + ax)* - 4F&,F~o1”’]/2F&, (3c) 

is me.  

3. Time dependences of the multipulse regime 

Let the sample containing the Mossbauer nuclei be subjected to a SR pulse sequence which 
has been reflected from an x-ray monochromator. It is assumed that the pulses have the 
same shape and duration T.  Let ti be the moment of emission of the ith quantum into the 
first pulse of the sequence. (It is continuously changing within the [0, TI interval.) Then 
there is a quantum into the kth pulse, emitted at the r, + rk moment, where rk is the time 
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interval between the first and kth pulses. Summing over i and k we obtain the amplitude 
of the incident radiation field 

A,;&, t )  = Q(ti)&;:;(u - ti - T A )  

(4) i.k 

A::)(u - t i  - t k )  = e;$3(u - ri - t ~ )  exp[(-iw - y/Z)(u -ti - f~)l/V’/’  

where U = t - n . r / c ,  n = k / / k l .  e(. . .) is the step function. e:nc is the unit polarization 
vector of incident radiation. y is the frequency distribution of SR pulses ( y  >> 1 /T  >> r), 
Y(f i )  = O(ti)  - O(ti - T )  and V is the sample volume. 

Then the amplitude of scattered radiation field has the form 

where the amplitude A$)@ - f ;  - t k )  can be calculated using ( 2 4  and (3a)-(3c) [SI. 
For forward scattering it  has  the following form: 

.i(i) Afs ( U  - ti - 4 )  = e;O(u - ti - f k )  exp[-io(u - f i  - t k ) ]  G ~ ( u  - f i  - f k )  

G;$(u - ri - f k )  = iexplik~&ll(expt-y(u - f i  - &)/ZI-  (r/y) (46) 

x exp[(iA - r/Z)(u - f ;  - tk)](p/4r2(u - t i  - t k )L /z ) J I (@(~  -t i  - tk)’/’) 

is the Rayleigh electron scattering amplitude, p is the nuclear resonant absorption where 
coefficient [6] and J I  is the Bessel function of first kind. 

For diffraction scattering the following expression may be obtained 

S ( i )  Ad, (U - fi - f k )  = e;B(u - ti - t x )  exp[-iw(u - ti - fk)] G&(uH, U - ri - C Y )  

G i S ( a ~ ,  U - ti - t k )  = Rexp[-y(u -ti - &)/2] 
(4c) 

f iexp[i(A + 2A + ir/Z)(u -ti - t k ) ]  

X (C/2xbbHy)Ji (C(U -ti - &))/(U -ti - t k )  

where 

R = (EH Z(F& 4- FLH) - [ (UH + 2(F& + X&)’ 
- 4(FiH + xiH)(FLO + ~ ~ ~ ) 1 ’ ’ ~ / 2 ( F ~ ~  + xiH)(u = -iy/Z) 

is the coefficient of total SR Rayleigh scattering, 

c = 2(AZ - 6’)’‘’ 

A = [UH + 2X& - ~ R ~ ( X L Q ~ ~ H ) I F / [ ( ~ H  + 2X&)’ - 41X&lz1 

B = (1 - I ~ A H ~ * ) F ~ / [ ( U H  + ?-X&)* - 41X&Iz] 

F = F&(A + U + ir/Z). 

X = 2F/(Cfx + 2X&) bS O H -  - S O H P i H / n O  

(4d) 

In (4d), no is the number of Mossbauer nuclei in the unit cell. When Rayleigh electron 
scattering is structurally forbidden, then (4d) is simplified to 

C =xi%,]  A =x/Z R = - 2 ~ ~ ~ , 1 ~ / y ~ , .  
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Now let us obtain the intensity of scattered radiation. It is calculated as the modulus of the 
Poynting vector 

I:(u) = (c/4r)hwjA:,(n)12 

or, using (4), (4n) and (4b), 

I : c ( ~ )  - W(ti)W(fj)exp(i(oij)exp(i(o~pw)G~,(u - iidG:E(U - $ 1 )  (5) 

where (o;j = - f,), (okl = o ( f k  - ti) and ria = i; - &. As SR is incoherent radiation, 
the moments of emission of quanta in a single pulse are uncorrelated with each other. So 
it is necessary to average the expression for the intensity of scattered radiation over the 
phase (oij. Therefore the quantity (exp(i(oij)) = (1/2x) so dqjj exp(i(o,j) appears instead 
of exp(i@j) in (5 ) .  So (5)  is not zero only when-i = j .  The phase (ok; is not averaged 
because i k  and il are the defined values. 

After this substitution we have 

k.1 t . j  

2n 

u:~(u ) )~ , ,  - C W ( ~ J  exp(i(oki) G L C ~  - t ik)~i;(u - til).  (5a) 
k.1 i 

As the Mossbauer experiment is statistical, it is necessary to average (5a) over ti. Then we 
obtain the expression 

((Z:c(~))p,,),, - - xexp(i(okr) S_mdh'P(h)Q:c(U - tidGiE(u .~ - Si) (5b) 

where N is the number of quanta in a single pulse of the sequence. For free-induction 
decay (FID) (U > T +max(rk)) the following expression is correct: 

(5c) 

CO N 

T 4.1 

u:m),,:),, - N Cexp(i(okl) ~ ; , ( u  - W Z ( U  - tl) 
k.I 

where 

G' res (U) = G;;(u) - iexp(ikX$ - yuj2) 

GI re, (U) = G:,(u) - Rexp[-yu/Z] 

for forward and diffraction scattering; respectively. Equation (5c) shows that there may be 
interference of resonant responses of single pulses of sequence. The value and shape of the 
FID (5c) depend on the time intervals &I. 

4. Numerical calculations and analysis 

When Ii.il > r the time dependences of FID are similar to those in [9,10]. Now let the 
condition Itkl:I < r be fulfilled. For forward scattering, numerical calculations have been 
carried out for an &Fe sample of thickness 7 p m  [I]. For diffraction scattering, an a- 
Fez03 sample~and pure nuclear diffraction (7,7,7) have been considered because in this 
caSe Rayleigh electron diffraction is essentially suppressed. The following dependences are 
shown in the figures: 

p ( r )  = expf-lr - r max(fkjIl((Z~~(rj)~;,),; 
where r = rf, f > max(tk). Calculating the particular values of the phase r p ~ l  we suppose 
that the time intervals i k  are defined with the precision 0.1 ns [l]. The main peculiarities 
of FID due to resonant response interference are analysed for a two-pulse SR sequence. In 
this case, using (5c), the following expressions for P(r ) ( r  z zz = rtz) can be obtained: 



J 10000.00 1000.00 

U) 

c 
2 

-Y .- 

!2 500.00 
e 
2 
Y ._ 
0 

0.00 
0.00 0.50 

r - r z  T-Tz 

Figure 1. RD dependences for forward scattering (two- 
pulse regime) (w / r  1 19.2 ns): curve I ,  12 = 2.8 ns 
( (~12 1 6.23 rad); curve 2.12 = 8.3 ns (pi2 2 0.08 rad); 
curve 3,  12 = 16.7 ns (912 zz 6.21 nd); curve 4, 
12 = 15.3 ns (plz = 3.09 rad). 

Figure 2. FID dependences for forward scattering (lwo- 
pulse regime): curve I ,  t2 = 1.4 ns (pi2 1 3 . 1  1 rad); 
cume 2, t2 = 6.9 ns (pl2 2 3.24 rad). 
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Figure 3. FID dependences fordiffranion scattering (two-pulse regime) n polarization of incident 
radiation ( q x j /  r 2 58.1 “a): curve 1, tZ = 2.8 ns; curve 2,iz = 22.2 ns ((012 2 0.05 rad); curve 
3. 12 = 38.9 ns ((012 2 6.25 rad): curve 4, 12 = 58.3 ns ((012 2 0.08 rad): cuke 5, rz = 56.9 ns 
(q12 I 3.24 rad). 

If destructive interference takes place (p12 + k), then 

P ( r )  - I(B/~~)”~J’((B~)’/~) exp(-n/2) - [ ~ / 4 ( r  - ~zPJ~([P(~  - r2)1‘/~)?. (74 

Once again,.if rz <( TO, we have 

P(s)  - [(~/4r)‘/2~I((~t)1/2) - [0/4(r - r * ) ~ ’ / ~ ~ I ( [ f i ( r  - rd~’ /~) )~( f igure  2, curve 1). 
(7d 

(In this case, for small E - rzP(s) = (,92/32)2 [ll].) 
If q -+ ro, then P(r )  is given by (74 ‘(figure 2, curve 2; figure 1, curve 4). 
The same discussion applies to diffraction scattering, when EH = 0.68 prad [21 is the 

fixed value. 
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7-r2 7 - 7 2  

Figure 4, FIO dependences for diffraction scattering (two-pulse regime) (n-polarization of 
incident radiation): curve I. 1 1  = 1.4 ns; curve 2. 12 = 20.8 ns (q12 Î 3.22 rad): curve 3. 
12 = 37.5 ns ( q 1 2  z 3.14 rad). 

60.00 

m 
C 
3 

.e 40.00 

~ - .~~~~~ L, , , , I 0.00 0.00 
0.00 1 .oo 0.00 0.20 

z- 
.- 5 20.00 e 
U 

.- 
U U 

Figure 4. FIO dependences for diffraction scattering (two-pulse regime) (n-polarization of 
incident radiation): curve I. 1 1  = 1.4 ns; curve 2. I2 = 20.8 ns (q12 Î 3.22 rad): curve 3. 
12 = 37.5 ns ( q 1 2  z 3.14 rad). 
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m 
c 
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w .- 

!3 400.00 e 
ff 
.U .- 
U 

0.00 
0.00 0.20 

7 - 7 3  r-r2 
Figure 5. Figure 6. FID dependence for diffraction scattering w- 
(three-pulse regime) (12 = 16.7 ns: 13 = 37.4 ns: emged over a Gaussian distribution (two-pulse regime) 
$013 zz 3.37 rad). (eon = 0.68 wad; U = 2.9 p n d  [2]; t2 = 1.4 ns). 

FID dependence for diffraction scattering 

If 912 --t 2z and 52 < rw = 3.8/ys, the first null Bessel function Jl(y's); then, using 

( 8 4  

(6b), we have 

P'(a,q, 5 )  - ~ : ( y ' ( ( t  - rz))/(r -&figure 3, curve 1) 

ps(aH, r )  - J:(YYr - Y))/[(5 - rz)2/21 

instead of 

for the incoherent sum. Coherent effects are attenuated when rz increases (figure 3, curves 
2 and 3) and for rz 

@b) 

roo the following can be obtained 

Ps(aH, r )  --t J:(y'((r - ~2))/4(s - rz)' 
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(singlepulse response) (figure 3. curve 4). 
If fplz + n, then, using [ l l ] ,  for rz < roo we have 

(figure 4, curve 1). For small r - rz, P’(uH, r )  - ysb(r - rz)’/64. P‘(uH, r )  is then 
given by (Sb), when rz + rm (figure 4, curves 2 and 3; figure 3, curve 5) .  If the sequence 
consists of three pulses, then choosing particular phases (PI*. (013 the FID curve for diffraction 
scattering may be strongly transformed (figure 5). Let us consider once again the two-pulse 
sequence for diffraction scattering when U H  varies within some interval defined by the 
distribution function f ( U N ) .  It could be, for instance, due to the angular divergence of 
the incident beam, to the mosaic of the single-crystal sample, or to when the sample is 
polycrystalline. Then, it is necessary to average (6b) over l y H  = -2sin(2&) de: 

m 
(pS)a , ,  = L m d a H  ~ ( U H ) P ~ ( ~ H ,  5) .  ( 8 4  

Let the function f (an) be the Gaussian distribution of width centred at uox and ‘plz + n. 
If U << U O H ,  then the time dependences (84 are like curves 1-3 in figure 4 and curve 5 
in figure 3. If U 2 CYOH. then the phase xrz /r  changes within a broad interval. These 
components give the main contribution to ( 8 4  for which the phase fplz - (x - xo)rz/ r 
becomes 2n either within the width U or on the wings of the Gaussian distribution (figure 6). 

5. Conclusion 

In this paper we have analysed the main peculiarities of Mossbauer filtration of SR in the 
multipulse regime. It is shown that different correlations between pulses cause both the sharp 
amplification and the strong transformation of the FID curve. The coherent amplification 
of the resonant response signal can lead to a considerable increase in the count rate for 
Mossbauer experiments with SR for the present synchrotron facilities. 
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