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Mossbauer filtration of synchrotron radiation: multipulse
regime
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Abstract. Mdssbauer filtration of synchrotron radiation (SR} in the multipulse regime is
considered. Phase correlations causes interference between resenant responses of single pulses
of sk sequence. Therefore, both the coherent amplification of response intensity and the variation
in form of free-induction decay take place. Numerical analysis of theoretical expressions has
been carried ont.

1. Introduction

Recently experiments with synchrotron radiation (SR) have aroused a great amount of interest
in Mossbauer spectroscopy. Usually experimenters investigate the time structure of the
resonant response of the Mossbauer nuclei system to the SR puise and modulation of time
dependences of scattered radiation due to hyperfine splitting of nuclear levels. Experiments
were made both on diffraction scattering [1] and forward scattering [2]. The frequency
of SR ‘flashes® was larger than the reverse lifetime T of the noclear in order to study the
time structure of the resonant response to a single SR pulse. However, in SR sources the
regime can be realized when the time interval between pulses is shorter than }/I". In
this case the incident radiation must be considered as the sequence of incoherent pulses
with additional phase relations (this situation looks like that for an optical inteferometer
with an incoherent source). Since the incoming wave is coherent to wave outgoing from
the resonant sample, then interference effects for the intensity of scattered radiation are
possible. They are essential only within the resonant response sequence when the coherent
time of the single responses are of the order of the time intervals between them. It can
cause both amplification of response signal and variation in its time structure. The problem
is considered in this paper.

2. Formalism

The semiclassical Maxwell~Bloch equations formalism in the slowly changing approxima-
tion is used for the theoretical calculations [3].

The original system of equations for the y -radiation field A(r, t) and the density matrix
p of the nuclear system has the form
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AA — (1/cH3PAJo1% = —(dx/e){F)
Gy =Tr(ef) =Y pihite
D58 /9t = —i(wo + weq + Qg — /D0t — (/WG - A W

JSe =Y dherm)sr — 7).
m

In (1), 5 is the nuclear transition cuirent operator, w., is the hyperfine component of y-
transition frequency (the quadrupole compenent is neglected), gz is the lattice vibration
frequency (Qoo = 0), p° = 1/(2f; + 1) is the equilibrium population of the ground
nuclear state and 72 is the radius vector of a nucleus when there are no lattice vibrations.
The system (1) is correct for all y-optics domain excepting the y-laser regime. According
to [3], A(r, 1), pga(r, 1) can be written as

Alr.) =Y ay(r,t)exp(—ilwt — (k+ H) - 7]}
eg . eg . (Ia)
Poﬁ(""a )= Zaoﬁ(ﬂ)(ra 1) exp{—i[wt — (k + H) - r]}
H
where H are the reciprocal-lattice vectors. The following conditions are true.
Firstly,
|ay| < |tk + H) - Vay] < |(k+ H)? - agl

(here, we are not considering the grazing-incidence case, when [Aay| ~ [(k+ H) - V)ay|
[4,51). Secondly,

18%ay/88%| € (w/)Pay /3t & (@ /c*)ag] k| =k K = (w/c)?.

Then, using (1a) and the above two conditions the shortened system of Maxwell-Bloch
equations can be obtained:

(ng - Viag + (V/cYoaq /31 + i(kay [2}ay = 2(wi/ k) (3)

_ . ) )
dagg /8t = —i(A — @y — Qop + 10 /2005 — (/W35 - an

where ng = (k+ H)/|(k + H)|, ay = H - (H + 2k)/ k> In order to solve the system
(2), we make the substitution:

20
ag{r,t) = f dv ap(r, v)exp(—ive)

e (20)
o'gg(r, = f dv a'gg (r, v) exp(—iv?).

—00

From (2) and (2a) we can obtain the system of equations for Fourier images ag(r, v} for
the case of coherent Mdssbauer scattering (" < S2pg when g8 # 0):

(- Vag(r, v) + %aﬁcr, v) + ikaTHaH (, v)

—2nfn Jop - ag(r,v)
= S T DS - @3
Vo o LT TRGL 1A+ v F 0 +1T/2) 3)
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where f is the Debye—~Waller factor and # is the abundance of the resonant nuclei. The
matrix elements J,, = f~/2j;t are the same for all resonant nuclei of the sample.
Sei, = ¥ unie con ©XP[I(H — H) » 7] is the nuclear structural factor. Vg is the unit-cell
volume and A = w — @y is the Doppler shift of the incident radiation frequency.

Using [6], equation (3) can be considerably simplified when hyperfine splitting of nuclear
levels is ahsent (w,, = 0):

(ny - Viay(r, v} + (iv/cday (r, v} +ilkay [2)a (T, v) = i(k/2) Fg y afy (T, V) (Ga)

where g, = (e} - ay), €}, i the unit transverse polarization vector. The nuclear scattering
amplitude Fy,; has the form

Fiy, = (1/4Vok) fT0wsSuu, Py, /D + v +il /2

where oyp is the nuclear resonant absorption cross-section and P, = (e} - ey;) is the
nuclear polarization factor. The system (3@) may be easily generalized when one adds a
Rayleigh electron scattering amplitude to F,, . Its form can be found in [7]. To solve (3a)
we use the snbstitution '

ay(r, v) = aly (v) explikp* (v)z]

which is valid when the incident radiation is a plane wave. The solution of the corresponding
algebraic system for aj,(v) and p*(v) is already known. The values aj,(v) are expressed
via the amplitude of the incident radiation field 4 _(v) and the boundary conditions for each
specific case of scattering. Let us consider the following two cases of coherent scattering

which can be reafized in Méossbaver experiments with SR.

(1) First consider forward scattering without any diffraction process (H = 0). Then for
radiation passing through the sample of thickness L the expression

dg (v, LY = aj, (v} exp(k Fg,L /2) (35

is correct.

(2) Next the two-wave approximation of diffraction scattering under Bragg geometry
conditions in a thick crystal is considered. Then for the diffracted component of scattered
radiation the expression

aS (V) = al, (W(FS + Fiy + oy — [(Fly + Fyy -+ an)? — 4F, Fiol 2 /2FS, (3¢)

is true.

3. Time dependences of the multipulse regime

Let the sample containing the Mossbauer nuclei be subjected to a SR pulse sequence which
has been reflected from an x-ray monochromator. It is assumed that the pulses have the
same shape and duaration T. Let & be the moment of emission of the ith quantum into the
first pulse of the sequence. (It is continuously changing within the [0, T'] interval.) Then
there is a quantum into the kth pulse, emitted at the #, 4+ # moment, where f; is the time
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interval between the first and &th pulses. Summing over i and k we obtain the amplitude
of the incident radiation field:

Ape(r,£) =3 W(e) AN (e — 1y — 1)
| Tk 4)
A —f — 1) = e}, 0(u — 1 — t) expl(—iw — y /2 — 1 — 1))/ V'

1nc ne

where u =t —n - rjc, n =k/flk|. 8(...) is the step function. €}, is the unit polarization

vector of incident radiation. y is the frequency distribution of SR pulses (y » 1/T » '),
W(t;) =0(t;) —8(t; — T) and V is the sample volume.
Then the amplitude of scattered radiation field has the form

AS ()= WA e~ 1 — 1) (4a)
IR

where the amplitude A% (u — 5 — 1) can be calculated using (2a) and (3a)-(3¢) [8].
For forward scattering it has the following form:

A — 1, —n) = €0 —1; — 1) expl—iw@ —  — &) Ghu —f — &)
G (e — t — 1) = lexplik x5 L1(expl—y (4 — t; — #)/2] — (T'/¥) (4b)
x exp[(iA — T'/2) (s — #; — 5 (B/AT (1 — 8 — )1 (Blu — ; — 1)'/%)

where x;; is the Rayleigh electron scattering amplitude, £ is the nuclear resonant absorption
coefficient [6] and J; is the Bessel function of first kind.
For diffraction scattering the following expression may be obtained:

A~ — ) = 40w —  — ) expl—iwu — t; — 4)] Giglan, u — 1 — )

Gilam, u— 5 — 1) = Rexpl—y @ — & — £)/2]

(4c)
Eiexpli(A + 24 +10/2)(u — 1; — )]
X (Cf2xbyuy) N (Clu — t; — 1))/ (u — t; — 1)
where
R = (an + 2(Fy + Fip) — Wan + 2(Fp + x80)°
— A(Fiy + 6 (Firo + X&) /2(Fiy + x5 (v = —iv/2)
is the coefficient of total SR Rayleigh scattering,
C=24>- B  x=2F/n+2al) b= Soupin/no
A = lag +2x8 — 2Re(XGobon IF /[ om + 2X50Y — 41 x3x 1] “d)

B = (1 — |B5u " F? /llar + 2x50)* — 4lxsu "1
F = Fj(A +v+il/2).

In (4d), np is the number of Mdssbauer nuclei in the unit cell. When Rayleigh electron
scattering is structurally forbidden, then (44) is simplified to

C = x|by] A=x/2 R = —2x|bju 2 /vbiy.
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Now let us obtain the intensity of scattered radiation. It is calculated as the modulus of the
Poynting vector

I3 () = (c/4mdhwl AL, ()|?
or, using (4), (4} and (45),
L)~ Y W) )CXP(I%)GXP(IW)G (-GS — 1) (5)

kd g
where @i; = w(t — 1), gy = @{fr — )} and #; = & — #. As SR is incoherent radiation,
the moments of emission of quanta in a single pulse are uncorrelated with each other. So
it is necessary to average the expression for the intensity of scattered radiation over the
phase ¢;;. Therefore the quantity (exp(ig;;)) = (1/2x) foz‘” de;; exp(ie;) appears instead
of exp(igi;) in (5). So (5) is not zero only when { = j. The phase ¢y is not averaged
because tp and & are the defined values. .
After this substitution we have

e (@), ~ > Wt explivn) Gl — 1) GEu — t). (5a)
ki oI

As the Mossbauer experiment is statistical, it is necessary to average (5a) over #;. Then we
obtain the expression

RIS )Y, I, Zexp(rm f AW ()G — )Gl — 1) (5)

where N is the number of quanta in a single pulse of the sequence. For free-induction
decay (FID) (u > T -+ max(t}) the following expression is correct:

150, NZexpcwkz)G S — 8) G — 1) (5¢)

where
G, () = G () — Lexp(ikxgyL — vu/2)
G (4) = G {u) — Rexp[—yu/2]

for forward and diffraction scattering, respectively. Equation (5¢) shows that there may be
interference of resonant responses of single pulses of sequence. The value and shape of the
FID (3¢) depend on the time intervals #;.

4. Numerical calculations and analysis

When |ti;] = T the time dependences of FID are similar to those in [9,10]. Now let the
condition |4.| < [ be fulfilled. For forward scattering, numerical calculations have been
carried out for an «-Fe sample of thickness 7 pm [1]. For diffraction scattering, an o-
Fe,O3 sample and pure nuclear diffraction (7,7,7) have been considered because in this
case Rayleigh electron diffraction is essentially suppressed The following dependences are
shown in the figures: : .

- P(7) = exp{—lt — I max{t) I (x) Yo Vi

where 7 = T't, f > max(#;). Calculating the particular values of the phase ¢y we suppose
that the time intervals # are defined with the precision 0.1 ns [1]. The main peculiarities
of FID due to resonant response interference are analysed for a two-pulse SR sequence. In
this case, using (Sc), the following expressions for P(z}(r > 73 = 'z} can be obtained:
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(a) for forward scattering (A = (),

P(T) ~ [(B/4T)TH(BTY ) exp(—) + [B/A(T — w)]J2([B(x — )]')
+ (B/2) exp(—7/2) N1 ((BT)*) 1 ((B(z — w)]V7) cos pra/[2(z — ©)]'F*

(6a)
where § ~ 106.3 [1];
{b) for diffraction scattering (A = —xg, @y is the fixed value),
Pélag, T) ~ HIT O ) exp(—m) /22 + TP (T — m) /(r — m)°
+ 2exp(— /2N (Y D)1 (y* (T — 1)) cos ¢y2] (6)

where y* = xo|Som [Py /T, |Sou| = 0.7042, PR, =~ 0.279 [2], xp = 461 [2]. First, we
shall analyse (6«). If the phase @3 ~> 2, then constructive interference takes place. In
this case,
P(z) ~ {(B/40) N1 ((BT) ) exp(—2/2) + [B/4(x — t)) P N((BG —e)IDP. (Ta)
If 7 <€ 1 = (3.8)%/B, the first null of the J; ((81)'/?) Bessel function, then the conditions
(B/47) 2N ((BrY ) = 18/4(x — )] PI([B(x — )]/ P exp(ra/2) = |
are fulfilled and
P(7) ~ [B/(t — )ITHIB(T — 1))V (figure 1, curve 1). (7b)

This value is twice that for the case of simple sum of two responses (@12 = 0).

10000.00 1000.00 7
2 2 ]
‘c € ]
= = i 1
.00 500.00 —
> 5000.0 > ~
2 2 ]
b ot -
a Lo . 2
P pu
=] o ] )
0.00 0.00 N N S N B S B Rt i |
0.00 . 0.50 0.00 Q.50
T—T2 T—T2

Figure 1. FID dependences for forward scattering {two-  Fipure 2. FID dependences for forward scattering (two-
pulse regime) {zy/F =2 19.2 ns): curve 1, 12 = 2.8 ns  pulse regime): curve |, 12 = 1.4 ns (pra = 3.11 rad);
{12 = 6.23 rad); curve 2, » = 8.3 ns (12 = 0.08 rad);  curve 2, £ = 6.9 ns {2 = 3.24 rad).

cutve 3, n = 16.7 ns (g2 =~ 6.21 rad); curve 4,

12 = 15.3 ns (g3 = 3.09 rad).
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When & < 15, then for T >  the condition
(B/4TY' 201 ((BT)') < [B/4(x — w)] 2N ([B(x — ©)]V?)

- is fulfilled and interference effects are less essential (fgure 1, curve 2).
For 2 = 1y the condition )

(B/40)' 21 ((B2)'?) < [B/4(r — )2 N BT — o)1)
is fulfilled and
P(z) — [B/A(r — w)VE(B(r — )]YP) (7e)

(single-pulse response} (figure 1, curve 3).

400.00

200.00

arbitrary units

T—T2

Figare 3. D dependences for diffraction scattering (two-pulse regime)  polarization of incident
radiation {rpo/ T o= 58.7 ns): curve I, » = 2.8 ns; curve 2, r» = 22.2 ns (g2 = 0.05 rad); curve
3, 1z = 38.9 ns (@12 = 6.25 rad); curve 4, 1 = 58.3 ns {12 2~ 0.08 rad); curve 5, 12 = 359 ns
(lplg = 3.24 rad).

If destructive interference takes place {p;; — ), then
P(z) ~ {(B/ATY 2T ((BT) D) exp(—12/2) — [B/4(z — o)) PN ((BGx ~ w)]'"DF. (T
Once again, if 71 < 79, we have

P(z) ~ {(B/40) 211 ((BD)'?) — [B/4(r — w1 A ([B(r — w)]Y*))(figure 2, curve 1).
(Te)

(In this case, for small T — 7, P(7) = (82/32)? [11].)

If & — 7, then P(7) is given by (7¢) (figure 2, curve 2; figure 1, curve 4).

The same discussion applies to diffraction scattering, when oy = 0.68 prad [2] is the
fixed value.
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Figure 4. FIp dependences for diffraction scattering (two-pulse regime) {m-polarization of
incident radiation): curve 1, &y = L4 ns; curve 2, & = 20.8 ns {pz = 3.22 rad); cuorve 3,
tn = 37.5 ns (12 =~ 3.14 rad).
£80.00 800.00 —
[7s} ) T
£ 40.00 h4 ]
S 5 i
E‘ E‘ 400.00 7]
o o .
~ 20.00 = -
O ‘a 7
- 4
o 5 .
o-Oc,|llllil4l\| 0.C0 T T T T 1T 1T T 1]
Q.00 1.00 0.00 0.20
T—T3 T—T2

Figure 5. rio dependence for diffraction scattering  Figure 6. Fip dependence for diffraction scattering av-
(three-pulse regime) (1 = 16.7 ns; t3 = 37.4 ns; eraged over a Gaussian disteibution {two-pulse regime)
13 = 3.37 rad). (epy = 0.68 prad; o = 2.9 prad [2]; £ = 1.4 ns).

i @12 — 2 and 5 & 100 = 3.8/y°, the first null Bessel function J;(¥*7); then, using
(65), we have
P g, T) ~ JE (T ~ )/ (z — w)(figure 3, curve 1) (8a)
instead of
Piag, T) ~ TP = m)/l(r — 2)*/2]

for the incoherent sum. Coherent effects are attenuated when 1o increases (figure 3, curves
2 and 3} and for 73 = 1g0 the following can be obtained:

Pioy, Ty — JHY(z — m))/4(z — 1)? (8b)
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{(single-pulse response) (figure 3. curve 4).
If 32 — 7, then, using [11], for 7o < 19y we have

Pi(ay, ©) ~ [-25 (7 (T — ) /(T — =)* + ¥ H (3 (z — m))/(x — w)] (8¢)

{figure 4, curve 1). For small 7 — w0, P*ay,7) ~ ysh(r — 13)%/64. Py, v) is then
given by (8b), when 1 - 1g9 (figure 4, curves 2 and 3; figure 3, curve 5). If the sequence
consists of three pulses, then choosing particular phases ¢y2, @3 the FID curve for diffraction
_scattering may be strongly transformed (figure 5). Let us consider once again the two-pulse
sequence for diffraction scattering when «y varies within some interval defined by the
distribution function f{xy). It could be, for instance, due to the angular divergence of
the incident beam, to the mosaic of the single-crystal sample, or to when the sample is
polycrystalline. Then, it is necessary to average (6) over ¢y = —25in(26g) d4:

PS)Q:H =f deH f(aH)PS(aH’ T). (Sd)

Let the function f(oy) be the Gaussian distribution of width o centred at gy and @y — 7.
If ¢ € oy, then the time dependences (8d) are like curves 1-3 in figure 4 and curve 5
in figure 3. K ¢ 2 oy, then the phase x7/ " changes within a broad interval. These
components give the main contribution to (84) for which the phase @13 — (x — xg)/T
becomes 2x either within the width o or on the wings of the Gaussian distribution (figure 6).

5. Conclusion

In this paper we have analysed the main peculiarities of Méssbauer filtration of SR in the
multipulse regime. It is shown that different correlations between pulses cause both the sharp
amplification and the strong transformation of the FID curve. The coherent amplification
of the resonant response signal can lead to a considerable increase in the count rate for
Mdssbauer experiments with SR for the present synchrotron facilities.
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